Gamma Ray Bursts and Cosmology with Constellation X

Guido Barbiellini, Francesco Longo and Giancarlo Ghirlanda
November 21st 2003

GRB a general introduction

An artistic connection?

e⁺e⁻ 1970's

GRB 020813 (credits to CXO/NASA)

The "gamma" era

- Distribution of sources
- Cosmological or Galactic?
- No host problem
- NS binary?

COMPTON OBSERVATORY INSTRUMENTS

Gamma-Ray Bursts

Temporal behaviour

2704 BATSE Gamma-Ray Bursts

Spectral shape

Spatial distribution

GRB: where are they?

The great debate (1995)

Fluence: 10⁻⁷ erg cm⁻² s⁻¹

Distance: 1 Gpc

Energy:10⁵¹ erg

Distance: 100 kpc

Energy: 10^{43} erg

Cosmological - Galactic?

Need a new type of observation!

The Afterglow

Right Ascension (deg; J2000)

- Good Angular resolution (< arcmin)
- Observation of the X-Afterglow

Costa et al. (1997)

- Optical Afterglow (HST, Keck)
- Direct observation of the host galaxies
- Distance determination

Djorgoski et al. (2000)

The Fireball model

- Relativistic motion of the emitting region
- Shock mechanism converts the kinetic energy of the shells into radiation.
- Baryon Loading problem

Long GRB

The "afterglow era"

- Detection of Host Galaxies
- GRB beaming and energetics
- SN connection
- X-ray lines

Jet Opening Angle

Harrison et al (1999)

Achromatic Break

Woosley (2001)

Jet and Energy Requirements

Frail et al. (2001)

Jet and Energy Requirements

Bloom et al. (2003)

Collapsar model

Woosley (1993)

- Very massive star that collapses in a rapidly spinning BH.
- Identification with SN explosion.

GRB 030329: the "smoking gun"?

(Matheson et al. 2003)

X-ray Lines

GRB 990705

Transient Absorbtion Line

Emission Lines

GRB 991216

X-ray Lines

Reeves et al. (2002)

X-ray Lines

A "Cosmological" era?

- GRB cosmology
- First Stars
- GRB observations by SWIFT

High precision radiography of ISM from z=2.3

GRB and Cosmology

GRB and Cosmology

- Meszaros & Rees (2003) astro-ph/0305115
- GRB afterglow detection in the range (z = 10 30)

z	$\frac{\lambda_{\mathrm{Ly}\alpha,\mathrm{H}}}{\mu\mathrm{m}}$	$\frac{E_t}{\text{keV}}$	$\frac{E_{Fe, K\alpha}}{\text{keV}}$	$F_E(10s)$	$F_E(10^2 s)$	$F_E(10^3 s)$	$F_E(10^4 { m s})$	$F_E(10^5 s)$
3	0.486	0.22	1.675	1.9^{-9}	6.8^{-10}	5.4^{-11}	4.3^{-12}	3.4^{-13}
6.5	0.912	0.22	0.893	6.1^{-10}	4.4^{-10}	3.5^{-11}	2.8^{-12}	2.2^{-13}
9.0	1.216	0.22	0.670	4.1^{-10}	4.1^{-10}	3.3^{-11}	2.6^{-12}	2.1^{-13}
12	1.581	0.22	0.515	3.0^{-10}	3.0^{-10}	3.2^{-11}	2.5^{-12}	2.0^{-13}
18	2.310	0.22	0.353	2.0^{-10}	2.0^{-10}	3.2^{-11}	2.6^{-12}	2.1^{-13}
30	3,770	0.22	0.216	1.3^{-10}	1.3^{-10}	3.5^{-11}	2.8^{-12}	2.2^{-13}

X-ray flashes (E_{peak}, Rate ½ GRB, Isotropic) (Heise 2003) structured jets off-axis GRBs or high Z GRBs?

GRB Cosmology

Pedagogical order

Loeb and Barkana (2000)

ConstellationX and GRB

- Hints for detection
- Spectral measurement
- Other satellites

Peak Energy – Isotropic Energy

Sakamoto et al. (2003)

Peak Energy – Isotropic Energy

Redshift distribution

Peak Energy

Peak Energy

Spectral Measurements

Line ID	Energy (keV)		Unabs. Flux $0^{-14} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{s}$	28 9833	Sig %	σ
Mg XII	$0.62^{+0.03}_{-0.02}$	1.35	$9.1^{+7.9}_{-6.3}$	211^{+182}_{-146}	97	2.2
Si XIV	$0.86^{+0.02}_{-0.03}$	1.32	$4.1^{+2.7}_{-1.8}$	128^{+83}_{-57}	99.98	3.8
SXVI	$1.11^{+0.02}_{-0.02}$	1.34	$2.4^{+0.8}_{-1.0}$	93^{+33}_{-39}	99.96	3.5
Ar XVIII	$1.35^{+0.04}_{-0.03}$	1.44	$0.9^{+0.9}_{-0.6}$	43^{+42}_{-27}	92	1.7
(Ar XVIII)		(1.31)				
Ca XX (Ca XIX)	$1.66^{+0.04}_{-0.04}$	1.45 (1.34)	$1.3^{+0.6}_{-0.8}$	76^{+36}_{-44}	99	2.5

Matheson et al. (2003)

GRB and Constellation X

New Telescopes

New Telescopes

ALMA

JWST

EXIST

Conclusions

- GRB and Cosmology: a long story
- Study of first galaxies and first stars
- Look into the Dark Ages
- Spectroscopy of high-Z Universe
- GRB as standard candle?
- GRB as cosmological probe